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Finite width of shear zones
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We present some experimental and numerical results based on a simple model designed to give an estimate
for the width of a shear zone. We conclude that the observed finite size of the shear zone can be associated with
the propagation of the force lines inside the medium. The model, based on a simple argument on the force
distribution and dilatancy, predicts a width of about ten grain diameters.
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[. INTRODUCTION studies based on continuum models do not permit a good
understanding of the underlying physics. As already dis-
Granular materials are important for a wide variety ofcussed in classical plasticity theory, these bands have zero
technical processes. They have unusual properties and onewfdth [1] and the discrete nature of the material seems to
the major problems in soil mechanics is to predict the propPlay an important role in the creation of these bands.
erties of sheared granular media. The classical description In order to obtain some information about the size and the
for such a deformation is given by the so-called nonassociatdynamics of the shear zones, we propose an experiment and
Mohr-Coulomb plasticity theory as introduced by Drucker @ discrete model. Our work is based on a simple assumption:
and Prager in 1952. Rudnicki and Ricd showed that, ex- the motion of the beads is governed by the compaction of the
Cept for the Special case in Wh|Ch the friction angle equa|§nedium, which dependS on the stress distribution inside the
the dilatancy angle, a spatial instability shows up in the formmedium. The propagation of the force through the beads
of a mathematical bifurcation, which physically means thatgoes along a complex structure and these force concentra-
essentially due to strain softening, the deformation rate conions can be displayed as lines between grains yielding con-
centrates on planes. The theory predicts mathematical plang¥ected networks of force transmissiph8]. Some of the
that is, planes with zero width. force lines can eventually turn back and dilate the medium.
All observations, however, show that the shear bands hav&his effect appears clearly in experiments where we push a
a finite width of the order of ten grain diameters. This resultPiston down into sand; the force lines that turn back dilate
has been found experimentally by a direct observation of théhe medium around the piston and move the surface up-
shear band2,3], or numerically[4—8] by direct simulation. wards. This effect can also be visualized photoelastically
This finite width naturally changes the macroscopic me{19]. We assume that this effect produces a decompaction of
chanical response of the packing as compared to the predig€ medium, which allows the beads to be displaced.
tion of the theory. For this reason there has been in recent The paper is organized as follows. In Sec. Il we present a
years strong research activity on the one hand to understarfémple model, which permits us to evaluate the width of the
and explain the finite width and on the other hand to incor-Shear band. In Sec. Il we detail the experiment and describe
porate into the existing p|ast|c|ty theory a tool that would the results. In Sec. IV we introduce the model and compare
produce shear bands of finite width. Three different apboth the experimental and the numerical results. In Sec. V
proaches have been suggested to introduce this length sca#€ summarize the main results of the paper.
into the continuum theory: nonlocal elasticity, gradient elas-
ticity, and Cosserat elasticity. All of these theories are heu-
ristic and a micromechanical justification is still lacking.
Another domain that is directly concerned with this prob-  Let us consider a box filled with dry sand under hydro-
lem is granular friction. The frictional propertig®,10],  static pressure, which is shear@ihce some timewith con-
which are very important in various domains, are directlystant velocity. The largest relative displacements between
governed by the shear bands. As an example, the study of tlggains are concentrated in the shear bg2@. This is pos-
motion of a fault zone in geophysics demands a good undesible because in the center of the band the density is suffi-
standing of the friction of the gauge. At present these geoeiently low (below Reynold’s dilatangyso that the grains
physical systems are essentially described phenomenolodiave enough space to perform displacements. We assume
cally using rate and state constitutive equatifhs—17. that the grains are sufficiently undeformable themselves. Due
The main purpose of this paper is to give a simple de+to this mobility of grains at the center, we consider the line in
scription of the shear zone in order to obtain some quantitathe middle of the shear band to be, to a certain extent, similar
tive information about the width of the mobile zone. We to a very flat free surface. Indeed, the granular flow down an
focus on the stress propagation inside the medium assumingclined chute has many similarities to shear bands and also
that the main properties of the band are governed by stressfinite width of the shear zone at the free surface has been
paths. We want to discuss a model to calculate the finiteneasured10]. Our argument is valid for both situations; the
width of the shear zone from microscopic configurations,only difference is the flatness of the surface. We are describ-
i.e., on the level of the grains and their contacts. Previousng a shear band similar to two chute flows going in opposite

II. ON THE WIDTH OF THE SHEAR BAND
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While there is no doubt that such an effect exists, it re-
mains to be shown that it can account for the mobilization of
only about ten layers and thus the finiteness of the shear
band. Intuitively one would expect that the turning back of
the force lines by 180° is a minor effect since the main stress
must go toward the direction of gravity as a continuum
theory would predict. But only lines that turn by 180° can
mobilize grainginto the less dense center of the barlich
a displacement also releases the stress along this line so that
it will not branch further, which, as we will see later, has an
important effect on the statistical combinatorics. A simple
two-dimensional model should now give us some quantita-
tive answer.

FIG. 1. Experimental protocol. We push one of the disks at the Let us consider a two-dimensional packing of disks of
top of the box until a movement takes place and measure thelsizeequal size wittm=4 contacts per particle, which is a typical
of the moving zone. In the experiment the piston can be normal tevalue for two-dimensional random packings. The deviation
the surface or orientated at an angle angle is thereforg8=45°. Let us imagine the packing built
of layers shifted against each other so that the grains of every

directions being pressed against each other at their free su#écond layer are on top of each other. So, we will only give
faces. Due to the external hydrostatic pressure and the raYery second layer an integer index in order to introduce the
domness of the motions of the grains not all the grains in théeNgth scale in units of a grain diameter. The grain exerting a
center of the shear zone are mobile and often two grainforce down into the packing be in the zeroth layer. It trans-
belonging to opposite sides get stuck against each other, thfgits its force into an intermediate layer in two equal compo-
being the microscopic origin for macroscopic friction. When Nents, deviating them by 45°. Within thisz layer the forces
two grains get stuck they exert big forces on the surroundinfre again split in two by-45° making that half of the force
medium, which generate some collective displacements dfn€s go hor|.zontri1lly within th|s_layer. After two further S.pllj[-
grains that finally unblock the two grains. We argue that duding bifurcations,; of all force lines already push a grain in
to the nature of force transmission in granular packings thes&'® Zeroth layer upwards without having touched the layer
collective displacements are localized in a few layers giving”dexed 1. Next we will calculate th_e fraction of force lines
rise to the finite width of the band. (or paths turning upward as a function of the layer depth.
Let us remember that a mechanical property of the granu- Let us calloj==+1 the variable indicating if a path devi-
lar microstructure is the fact that forces inside the mediunft€s by=45° at theith bifurcation. A path going throug
are transmitted through essentially pointlike contacts begrains is characterized by a strifigy,....on]. When the
tween the grains. These stress concentrations are connecte@ndition [3{2qo|=4 is fulfilled, this path has turned up-
by lines yielding networks of force transmissiph8]. As-  ward and is eliminated from the counting since it does not
suming that on average a grain hrasontacts, one can quan- matter how much it might still branch, the force shows up-
tify the discreteness of the granular structure by the averag&ards and is, therefore, able to mobilize a set of grains. This
angle 28 between two contacts, which in two dimensions isgives us a truncated Pascal triangle, which can be defined by
B=180°/. When a force is applied on a grain from a cer- three quantitiesa(l), b(l), andc(l), being the number of
tain direction this force is deviated into the directions of thepaths having made one turn to the right, no turn, and one turn
contacts, by an angle of the order@fTherefore, the propa- to the left, as a function of the depth
gation of stresses through the packing goes along a kindly Let us definea(0)=1, b(0)=2, andc(0)=1 and iterate
structure where at each grain the force lines bifurcate int®&s
several branches having a typical angleBofvith respect to

the original direction. An important consequence for our ar- a(l+1)=2a(l)+b(l),
gument is that due to a sequence of such changes in the

direction, these lines can eventually also turn by more than b(I+1)=2b(l)+a(l)+c(l),
90°. Once the lines have turned by more than 90°, they have

a positive component in the upward direction and can, there- c(l+21)=2c(l)+b(l).

fore, mobilize a set of grains. We will, however, in the fol-

lowing, consider as an example only lines that turn by morelhen one obtains the fraction of paths turning upwards at the
than 180°, i.e., which all the force shows upward. In the latetth layer to be

sections we will, in fact, see that this value is too high. As

already mentioned this happens when one pushes a piston a(l)+c(l)

down into sand: the sand around the piston displaces up- o(l)= 22l+4

wards. We believe that it is this kind of collective upward

motion that in a shear band allows a stuck grain to creatgiving

itself some space by moving other grains instead towards the

center of the bandsee Fig. 1 1:.4.35,35.25 for 1=0,..5.
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This means that at the fifth layer, i.e., five grains diameters 0.15
deep, already 60%22{1000)] of the possible paths have
turned up and could, therefore, have produced a displace- 0.12 | & analyticat (brownian)
ment of grains upwards. It is also interesting to remark that —"g
the fraction of paths turning upward at lededmong those 0.09 - ,:' Q
paths that have never reached that levekigressed in per- = i
cend Q : o)
0.06 |! Q
12.5,14.3,14.6,14.6,14.2,14.2 for the layels=0,...,5. "' %
0.03 }i % ]
This shows that the process is nearly multiplicative and will, i %
therefore, converge very fast for large ol ‘ , cocech
Itis clear that most of the stress is carried by paths that go 0 20 40 60 80
downward and that all the paths that turn up together only [

carry a very small fraction of the total stresxl]. But if the . _ . _
medium is not cohesive, not much force is needed to displace F'G- 2- Comparison between the discrete model and its analyti-
some particles by a little distance. It should be noted that th g 1apprOX|mat|on. The approximation is expected to be good for
deeper a path turns upward the larger collective motion of ™ ™
grains it can generat@see shaded region in Fig).JAlso the
larger are the friction forces it has to overcome to mobilize
the grains and the smaller is typically the force transmitted.

We can obtain the analytical expression fufl) in the
limit: 1/1—0. The quantitie(l) represent the distribution
function over of the total number of steps done before th
condition |3 yoi| =4 is obtained.

We define

Using a metallic piston we apply by hand a tiny displace-
ment on the top of one coin, by increasing the strain until a
motion of particles occurs. Then we measure the position of
the deepest moving coin and make statistics over different
e(ealizations. Each displacement defines an event, which de-
scribes the motion of coins. The coins themselves are well
identified and we can precisely define the depth. We chose to
measure this length as follows: Among the coins that move
m we identify the deepest and we measure the vertical distance

¢ :2 o (1) between the bottom of this coin and the top coin on which
ms we applied the pointlike force. This depth corresponds to the
distance between the top of the packing and the position
whereo; is a random variable that takes the values with ~ where the slide between the mobile and the static zone oc-
probabilities:p(—1)=p(1)=0.5. We can define a stopping curred. Sometimes motion occurs only at the top of the pack-

time: 7=min(m,|&,|=a), wherea=4 in this case. ing due to local instabilities of particles, these events are not
The valuet,, is the discrete version of a one-dimensional considered and are not included in the statistics.
Brownian motion. In this limit,&,, is a martingalg22] and We first prepare the packing of coins using different meth-

we can calculate the distribution far The result for the ods. The first one is obtained by putting the coins randomly

continuum problem is expected to solve our discrete probleninside the medium, without any other action. This is the non-
in the limit 11 —0. compacted configuration. The second medium consists of the

Then we can write the expression fofl), previous random packing but in a compacted form. The com-

a(2n+1) [a(2n+1)]?
a8 T a2 @
with =2k andk=2, 3, 4,....

Figure (2) shows the result of the model and the result of
Eq. (2) with a=4.

o<|>=4n§0<—1>“

Ill. EXPERIMENTS

In order to obtain more detailed information about the
dynamics, we made several experiments. We focus on the!
effect of a pointlike strain submitted locally to a two- &
dimensional arrangement of disks. We work with a rectangu-_
lar box made of two vertical plexiglas platésee Fig. 3the A
space between the two plates is filled with coins. The box is !

20 cm high and 55 cm long, the spacing between the twol/
plates is 2 mm. The coins have diameters ranging from 10 to
30 mm. We insert the coins randomly in the box. FIG. 3. Experimental apparatus.
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FIG. 4. Plot of the results of the experiments, and of the model, F|G. 5. Same as in Fig. 4 except that the force is applied at an
in the noncompacted medium with the force applied in the verticalngle o of 45°. In the model we use the same parameter as previ-
direction. The model clearly reproduces the peak in the statistics buysly for the model, we simply take equal to 45°. We reproduce
cannot reproduce the amplitude. the main characteristics of the experiments.

paction was realized tapping the box with an hammer. Wdarger than 10 cm. This seems to be a consequence of the
stop the vibration when no significative movement occurdinite size of the experimental box. We will focus on this
anymore. point is Sec. IV.

The displacement is applied either normally to the surface Another important fact is that the sliding zone is localized
or with an angle of 45°. When the first motion appears wet0 @ band at a depth of 2-3 particle diameters.
measure the depth of the mobile zone as already discussed. With the compacted medium we made the same measure-
We realized approximately 200 experiments for each conments. The results are qualitatively the same as seen in Figs.
figuration. After five measures made at different places of thé and 7. The number of events decreases rapidly with the
same sample, we change the arrangement of the coins fepth. Here we observe essentially two peaks, and their po-
order to make the measures on statistically independerﬁition depends on the orientation of the displacement. When
samples. We perform these experiments on the two differerthe stress is normal, the first peak is located at 3 cm and the
types of samples presented previously, and evaluate the disecond one at around 5 cm. If the stress is orientated by an
tribution of depth. This is simply the number of events of aangle of 45°, the first peak appears at 2 cm and the second at
given depth divided by the number of measurements. Whearound 4 cm as seen in Fig. 6. As for the noncompacted
the orientation of the applied stress is more parallel to the
surface, the distribution changes and the rupture occurs clos 04 [ .
to the surface. We will discus the results of the experiments
more precisely later.

The coins, which participate in the motion can be well
identified. We tried to keep the displacements as small as
possible. Typically they were of the order of 1 mm. The force
that one needs to impose in order to see a motion fluctuates
but unfortunately we cannot measure it. The horizontal sur-%
face of the ensemble of coins cannot be defined precisely dus
to the finite diameter of the coins. There is also an uncer-< @/’; Vo
tainty & in the position of the sliding zone. o | A

The results of the experiments made with a noncompaclt ,; L /o ¥ M i
medium are shown in Figs. 4 and 5. Figure 4 shows the o | %
results when the stress is normal. We observe three peaks i Q/ 7'6 G%\ *‘*M
2, 3.5, and at 5 cm corresponding to one, two, or three aver- ; / ej‘** * 4
age coin sizes. In the second curve the stress is orientated i oebm *—k—k : A
an angle of 45° and the peaks are located at the same depth z (cm)
but the distribution changes. More events occur close to the
surface. FIG. 6. Statistic of the position of the rupture. Measurements

In both cases the number of events decreases rapidly withere made with a compacted mediums=0°. The graph shows the
the depth and practically no events were measured at depthessult of the numerical simulation.

G —© experiment
03 k- *-- =% model i
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0 . , . S e FIG. 8. Model of the stress propagation. We assume that the
0 2 4 6 8 10 strain follows stochastic paths. If the path reaches the critical angle
Z(cm) N\ we consider that it can participate to the deformation and dilate
] the medium. The angla can be controlled experimentally; we used
FIG. 7. The same witlk=45° and\=78°, see Table | both a=0° anda=45°

medium, the movements are closer to the surface when theonstant value equal to the mean diameter of the particles,

force is applied at 45°. The main difference with the experi-namely, 1.6 cm.

ments with a noncompacted medium is the mean depth of the The anglex of the orientation of the initial stregsee Fig.

position of the sliding zone, which is larger in the compacted8) it is fixed to 0° or to 45° depending on the experiment.

case. This quantity is controlled externally and cannot be adjusted

Summarizing, due to the discrete nature of the particleso fit the experiments.

the movements are localized around particular positions, Summarizing, the most important parameters are the

which correspond to multiples of the mean diameters of theangle on dispersiors; that depends on the positidn the

coins. These properties will be used to test the validity of ouwvalue of the critical angl&, and the disorder amplituddsee

model. Fig. 9. B characterizes the direction of the stress inside the
medium. It is chosen uniformly distributed around the values
+ By and — B, (see Fig. 10 the width of the distribution

IV. MODEL AND NUMERICAL SIMULATION around+ By and— Bq is |, which is the only parameter in the

In order to describe the dynamics we develop a S|mp|én0de| Controlling the disorden is the critical angle, when
numerical model, based on the idea presented in Sec. 1. TH&€ orientation of the line reaches this value we stop the walk
model used in the simulation includes disorder. and measure its depth.

A mechanical consequence of the granular microstructure [n order to compare the results of the simulation with the
is the fact that stresses inside the medium are obliged to pa§Xperimental data we calculate the distribution of the depth
through pointlike contacts between grains. Here we assum@ the paths. Then we calculate the mean number of events
that the main property of the previous experimental result$hat occur at depttx=0.5cm. Now we will compare the
can be recovered focusing on the geometry of the force COffBSU"[S of the model with the experimental results and discuss
centration network. The lines propagate into the medium ac-
cording to simple rules given by the geometry. We use the P(B)
model presented in Sec. Il.

In this model we assume that the forces inside the me-
dium deviate into the directions of the contacts. This defines
an angle of deviatiog, which was chosen constant as shown
in Fig. 8 (45° in Sec. 1). Here we choosg randomly dis-
tributed.

We will also calculate another quantity here than the one
from Sec. Il. Here we do not focus on the length of the path
before the force turns up but on the depth where it turns _l'3 +f,) B
back. In the simulation we need to define an angle, which 0 0
indicates the position where the disks start to move. We call
it the critical anglen. In Sec. Il this angle was taken to be
180°, here we will adjust its value to the experiment.

Various possibilities can be used to implement the length FIG. 9. Probability distribution function of. In the model the
unit of the path. We can keep this length constant or ranenly source of disorder is the random varialeThe strength of the
domly distributed. In our simulation we decided to choose adisorder is controlled by. Herel <3,

21 21
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P(B) ing, since for rolling the force that needs to be applied must
not go through the center of mass, andan also be smaller
than 90°. Rolling is not included in our model and is in fact
very rare if the grains are arbitrarily shaped.

121 Then we test the validity of the model. We change the
1 1 parametersy (0°—45°) and we let3, andl unchanged. In
- both, the compacted and noncompacted cases, the model pre-
dicts quite well the change in the distribution, but the result
| for the great length disagree systematically. This systematic
o +l§° B effect seems to be due to the finite size of the box. The
longest paths, which produce the largest events, are sup-
pressed due to the finite size of the experimental box. It
FIG. 10. Probability distribution function of3. This graph  would be interesting to make the same experiment with a
shows the distribution for> g,,. bigger box, and to test the validity of these assumptions.

In the case where the coins are not compacted, the disper-
the value of the different parameters used to obtain the besion angle that permits to recover qualitatively the results has
fit. the valuen/6 and the value of the critical angle 182.8. In

Due to the simplicity of the model the comparison canthe second experiment we work with a compacted medium,
only be qualitative. The results are shown in Figs. 4, 5, 6here the model gives the valug2.5 for the deviation angle
and 7. We recover qualitatively the main features of the exand #/1.2 for the critical angle. We summarize the results in
periment. The number of events decreases rapidly with th&able I.
depth, and is concentrated around two or three mean diam-
eters of the coins. This effect is purely geometrical due to the V. CONCLUSION
finite size of the particle and the angle of dispersion.

mode!. In tOLIjr or;lnlon_ th'st 'ﬁ (t:lue dtq[hthte fact tt_hat the rG?altitative analysis of a simplifief23] model shows this to be a

experimental surface 1s not fiat and that sometimes a ne'S.ﬂb'lausible mechanism and justifies a width of about ten grain
boring particle is in a higher position than the grain that 'Sdiameters for the mobilizable zone, i.e., the shear band. Al-
extgrr;ally putshed. Ic? that case, we observe events that trmough our argument is, of course, very simplified, we have
mogdel cannot reproduce. shown that the model can reproduce qualitative experimental

The _valueoofam tt'e simulation is taken from the experi- data. We have also considered disorder in the position of
ments i.e., 0° or 45°. Then we choose a length that corre

sponds to the mean diameter of the particle. In the sim lat.o'rains introducing fluctuations in the local deviation angles
P : ! particie. imuiatiors 'r,e average value @, which we chose in our calcula-
we take it 1.6 cm. The values of the other parameters ar

i . on, will also depend on the material used and will be
shown in Table 1,8, is chosen such thgsy,=180°/, the X : . . .
number of contach of a grain be between 3 and 6. The smaller for higher polydispersity. We have disregarded the

. > ) . fluctuations in the forces, which are known to be very strong
choice ofl does not really influence the .f't' According .to the [21]. Since the argument is based on the existence of a force
model, A should be greater than 90° in order to give aNline rather than on the value of the force through it, these

. Tluctuations might not be so important. There is, in general
smaller values. The fact that fits best for values less than also disorder in the grain sizes, and our model considers only

90° In some cases shows that the events can be generalgd nean diameter of the particle. Finally, our calculation

even vvhen the force betwegn the centers of mass of WQas two dimensional. A generalization of our model to three
contacting grains has no positive upward component. We ®imensions should be performed

plain tr;ls_faclt by tht_e Iobservatlon th?t n otu_r expeorllrgentzlall One could take the effect of friction into account by re-
case of circular particles many events are triggered by ro weighting the paths that turn upward by a mobilization fac-

tor, for example, inversely proportional to its length. The

TABLE 1. Parameters obtained by fitting to the experimental introduction of such a factor instead of a constant static fric-

data. tion threshold seems justified due to the fact that the forces
o Bo | N are in reality random. Multiplying the mobilization factor
with the probability to have a path as calculated above and
Noncompact 0° 30° +45° 64.3° normalizing appropriately give a likelihood of 76% to mobi-
Noncompact 45° 30° +45° 64.3° lize a path within the first five layers. The above argument
Compact 0° 51° +36° 90° was made for one-half of a shear band. For the entire shear
Compact 45° 51° +36° 78° band it, therefore, seems that a width of ten grain diameters

is very consistent with our picture.
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