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Finite width of shear zones

Bertrand Francois, Fre´déric Lacombe, and Hans J. Herrmann
PMMH-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

~Received 26 February 2001; published 6 March 2002!

We present some experimental and numerical results based on a simple model designed to give an estimate
for the width of a shear zone. We conclude that the observed finite size of the shear zone can be associated with
the propagation of the force lines inside the medium. The model, based on a simple argument on the force
distribution and dilatancy, predicts a width of about ten grain diameters.
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I. INTRODUCTION

Granular materials are important for a wide variety
technical processes. They have unusual properties and o
the major problems in soil mechanics is to predict the pr
erties of sheared granular media. The classical descrip
for such a deformation is given by the so-called nonassoc
Mohr-Coulomb plasticity theory as introduced by Druck
and Prager in 1952. Rudnicki and Rice@1# showed that, ex-
cept for the special case in which the friction angle equ
the dilatancy angle, a spatial instability shows up in the fo
of a mathematical bifurcation, which physically means th
essentially due to strain softening, the deformation rate c
centrates on planes. The theory predicts mathematical pla
that is, planes with zero width.

All observations, however, show that the shear bands h
a finite width of the order of ten grain diameters. This res
has been found experimentally by a direct observation of
shear band@2,3#, or numerically@4–8# by direct simulation.
This finite width naturally changes the macroscopic m
chanical response of the packing as compared to the pre
tion of the theory. For this reason there has been in rec
years strong research activity on the one hand to unders
and explain the finite width and on the other hand to inc
porate into the existing plasticity theory a tool that wou
produce shear bands of finite width. Three different a
proaches have been suggested to introduce this length
into the continuum theory: nonlocal elasticity, gradient el
ticity, and Cosserat elasticity. All of these theories are h
ristic and a micromechanical justification is still lacking.

Another domain that is directly concerned with this pro
lem is granular friction. The frictional properties@9,10#,
which are very important in various domains, are direc
governed by the shear bands. As an example, the study o
motion of a fault zone in geophysics demands a good un
standing of the friction of the gauge. At present these g
physical systems are essentially described phenomeno
cally using rate and state constitutive equations@11–17#.

The main purpose of this paper is to give a simple
scription of the shear zone in order to obtain some quan
tive information about the width of the mobile zone. W
focus on the stress propagation inside the medium assum
that the main properties of the band are governed by st
paths. We want to discuss a model to calculate the fi
width of the shear zone from microscopic configuratio
i.e., on the level of the grains and their contacts. Previ
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studies based on continuum models do not permit a g
understanding of the underlying physics. As already d
cussed in classical plasticity theory, these bands have
width @1# and the discrete nature of the material seems
play an important role in the creation of these bands.

In order to obtain some information about the size and
dynamics of the shear zones, we propose an experiment
a discrete model. Our work is based on a simple assumpt
the motion of the beads is governed by the compaction of
medium, which depends on the stress distribution inside
medium. The propagation of the force through the be
goes along a complex structure and these force conce
tions can be displayed as lines between grains yielding c
nected networks of force transmission@18#. Some of the
force lines can eventually turn back and dilate the mediu
This effect appears clearly in experiments where we pus
piston down into sand; the force lines that turn back dil
the medium around the piston and move the surface
wards. This effect can also be visualized photoelastica
@19#. We assume that this effect produces a decompactio
the medium, which allows the beads to be displaced.

The paper is organized as follows. In Sec. II we presen
simple model, which permits us to evaluate the width of t
shear band. In Sec. III we detail the experiment and desc
the results. In Sec. IV we introduce the model and comp
both the experimental and the numerical results. In Sec
we summarize the main results of the paper.

II. ON THE WIDTH OF THE SHEAR BAND

Let us consider a box filled with dry sand under hydr
static pressure, which is sheared~since some time! with con-
stant velocity. The largest relative displacements betw
grains are concentrated in the shear band@20#. This is pos-
sible because in the center of the band the density is s
ciently low ~below Reynold’s dilatancy! so that the grains
have enough space to perform displacements. We ass
that the grains are sufficiently undeformable themselves. D
to this mobility of grains at the center, we consider the line
the middle of the shear band to be, to a certain extent, sim
to a very flat free surface. Indeed, the granular flow down
inclined chute has many similarities to shear bands and
a finite width of the shear zone at the free surface has b
measured@10#. Our argument is valid for both situations; th
only difference is the flatness of the surface. We are desc
ing a shear band similar to two chute flows going in oppos
©2002 The American Physical Society11-1
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FRANCOIS, LACOMBE, AND HERRMANN PHYSICAL REVIEW E65 031311
directions being pressed against each other at their free
faces. Due to the external hydrostatic pressure and the
domness of the motions of the grains not all the grains in
center of the shear zone are mobile and often two gra
belonging to opposite sides get stuck against each other,
being the microscopic origin for macroscopic friction. Wh
two grains get stuck they exert big forces on the surround
medium, which generate some collective displacements
grains that finally unblock the two grains. We argue that d
to the nature of force transmission in granular packings th
collective displacements are localized in a few layers giv
rise to the finite width of the band.

Let us remember that a mechanical property of the gra
lar microstructure is the fact that forces inside the medi
are transmitted through essentially pointlike contacts
tween the grains. These stress concentrations are conn
by lines yielding networks of force transmission@18#. As-
suming that on average a grain hasn contacts, one can quan
tify the discreteness of the granular structure by the aver
angle 2b between two contacts, which in two dimensions
b5180°/n. When a force is applied on a grain from a ce
tain direction this force is deviated into the directions of t
contacts, by an angle of the order ofb. Therefore, the propa
gation of stresses through the packing goes along a kin
structure where at each grain the force lines bifurcate
several branches having a typical angle ofb with respect to
the original direction. An important consequence for our
gument is that due to a sequence of such changes in
direction, these lines can eventually also turn by more t
90°. Once the lines have turned by more than 90°, they h
a positive component in the upward direction and can, the
fore, mobilize a set of grains. We will, however, in the fo
lowing, consider as an example only lines that turn by m
than 180°, i.e., which all the force shows upward. In the la
sections we will, in fact, see that this value is too high.
already mentioned this happens when one pushes a p
down into sand: the sand around the piston displaces
wards. We believe that it is this kind of collective upwa
motion that in a shear band allows a stuck grain to cre
itself some space by moving other grains instead towards
center of the band~see Fig. 1!.

FIG. 1. Experimental protocol. We push one of the disks at
top of the box until a movement takes place and measure the sd
of the moving zone. In the experiment the piston can be norma
the surface or orientated at an anglea.
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While there is no doubt that such an effect exists, it
mains to be shown that it can account for the mobilization
only about ten layers and thus the finiteness of the sh
band. Intuitively one would expect that the turning back
the force lines by 180° is a minor effect since the main str
must go toward the direction of gravity as a continuu
theory would predict. But only lines that turn by 180° ca
mobilize grains~into the less dense center of the band!. Such
a displacement also releases the stress along this line so
it will not branch further, which, as we will see later, has
important effect on the statistical combinatorics. A simp
two-dimensional model should now give us some quant
tive answer.

Let us consider a two-dimensional packing of disks
equal size withn54 contacts per particle, which is a typica
value for two-dimensional random packings. The deviat
angle is thereforeb545°. Let us imagine the packing bui
of layers shifted against each other so that the grains of e
second layer are on top of each other. So, we will only g
every second layer an integer index in order to introduce
length scale in units of a grain diameter. The grain exertin
force down into the packing be in the zeroth layer. It tran
mits its force into an intermediate layer in two equal comp
nents, deviating them by645°. Within this 1

2 layer the forces
are again split in two by645° making that half of the force
lines go horizontally within this layer. After two further split
ting bifurcations,1

8 of all force lines already push a grain i
the zeroth layer upwards without having touched the la
indexed 1. Next we will calculate the fraction of force line
~or paths! turning upward as a function of the layer depth

Let us calls i561 the variable indicating if a path devi
ates by645° at thei th bifurcation. A path going throughm
grains is characterized by a string@s1 ,...,sm#. When the
condition uS i 50

m s i u54 is fulfilled, this path has turned up
ward and is eliminated from the counting since it does
matter how much it might still branch, the force shows u
wards and is, therefore, able to mobilize a set of grains. T
gives us a truncated Pascal triangle, which can be define
three quantities:a( l ), b( l ), andc( l ), being the number of
paths having made one turn to the right, no turn, and one
to the left, as a function of the depthl.

Let us definea(0)51, b(0)52, andc(0)51 and iterate
as

a~ l 11!52a~ l !1b~ l !,

b~ l 11!52b~ l !1a~ l !1c~ l !,

c~ l 11!52c~ l !1b~ l !.

Then one obtains the fraction of paths turning upwards at
l th layer to be

o~ l !5
a~ l !1c~ l !

22l 14

giving

1
8 , 1

8 , 7
64 , 3

32 , 41
512, 35

512 for l 50,...,5.

e

to
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FINITE WIDTH OF SHEAR ZONES PHYSICAL REVIEW E65 031311
This means that at the fifth layer, i.e., five grains diamet
deep, already 60%@5S i 50

5 o( i )# of the possible paths hav
turned up and could, therefore, have produced a displ
ment of grains upwards. It is also interesting to remark t
the fraction of paths turning upward at levell among those
paths that have never reached that level is~expressed in per
cent!

12.5,14.3,14.6,14.6,14.2,14.2 for the layersl 50,...,5.

This shows that the process is nearly multiplicative and w
therefore, converge very fast for largel.

It is clear that most of the stress is carried by paths tha
downward and that all the paths that turn up together o
carry a very small fraction of the total stress@21#. But if the
medium is not cohesive, not much force is needed to disp
some particles by a little distance. It should be noted that
deeper a path turns upward the larger collective motion
grains it can generate~see shaded region in Fig. 1!. Also the
larger are the friction forces it has to overcome to mobil
the grains and the smaller is typically the force transmitt

We can obtain the analytical expression foro( l ) in the
limit: 1/l→0. The quantitieso( l ) represent the distribution
function over of the total number of steps done before
condition uS i 50

m s i u54 is obtained.
We define

jm5(
i 50

m

s i , ~1!

wheres i is a random variable that takes the values61 with
probabilities:p(21)5p(1)50.5. We can define a stoppin
time: t5min(m,ujmu5a), wherea54 in this case.

The valuejm is the discrete version of a one-dimension
Brownian motion. In this limit,jm is a martingale@22# and
we can calculate the distribution fort. The result for the
continuum problem is expected to solve our discrete prob
in the limit 1/l→0.

Then we can write the expression foro( l ),

o~ l !54(
n50

`

~21!n
a~2n11!

A2p l 3
expH @a~2n11!#2

2l J ~2!

with l 52k andk52, 3, 4,....
Figure~2! shows the result of the model and the result

Eq. ~2! with a54.

III. EXPERIMENTS

In order to obtain more detailed information about t
dynamics, we made several experiments. We focus on
effect of a pointlike strain submitted locally to a two
dimensional arrangement of disks. We work with a rectan
lar box made of two vertical plexiglas plates,~see Fig. 3! the
space between the two plates is filled with coins. The bo
20 cm high and 55 cm long, the spacing between the
plates is 2 mm. The coins have diameters ranging from 1
30 mm. We insert the coins randomly in the box.
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Using a metallic piston we apply by hand a tiny displac
ment on the top of one coin, by increasing the strain unt
motion of particles occurs. Then we measure the position
the deepest moving coin and make statistics over differ
realizations. Each displacement defines an event, which
scribes the motion of coins. The coins themselves are w
identified and we can precisely define the depth. We chos
measure this length as follows: Among the coins that mo
we identify the deepest and we measure the vertical dista
between the bottom of this coin and the top coin on wh
we applied the pointlike force. This depth corresponds to
distance between the top of the packing and the posi
where the slide between the mobile and the static zone
curred. Sometimes motion occurs only at the top of the pa
ing due to local instabilities of particles, these events are
considered and are not included in the statistics.

We first prepare the packing of coins using different me
ods. The first one is obtained by putting the coins random
inside the medium, without any other action. This is the no
compacted configuration. The second medium consists of
previous random packing but in a compacted form. The co

FIG. 2. Comparison between the discrete model and its ana
cal approximation. The approximation is expected to be good
l @1.

FIG. 3. Experimental apparatus.
1-3
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FRANCOIS, LACOMBE, AND HERRMANN PHYSICAL REVIEW E65 031311
paction was realized tapping the box with an hammer.
stop the vibration when no significative movement occ
anymore.

The displacement is applied either normally to the surf
or with an angle of 45°. When the first motion appears
measure the depth of the mobile zone as already discus
We realized approximately 200 experiments for each c
figuration. After five measures made at different places of
same sample, we change the arrangement of the coin
order to make the measures on statistically independ
samples. We perform these experiments on the two diffe
types of samples presented previously, and evaluate the
tribution of depth. This is simply the number of events o
given depth divided by the number of measurements. W
the orientation of the applied stress is more parallel to
surface, the distribution changes and the rupture occurs c
to the surface. We will discus the results of the experime
more precisely later.

The coins, which participate in the motion can be w
identified. We tried to keep the displacements as smal
possible. Typically they were of the order of 1 mm. The for
that one needs to impose in order to see a motion fluctua
but unfortunately we cannot measure it. The horizontal s
face of the ensemble of coins cannot be defined precisely
to the finite diameter of the coins. There is also an unc
tainty d in the position of the sliding zone.

The results of the experiments made with a noncomp
medium are shown in Figs. 4 and 5. Figure 4 shows
results when the stress is normal. We observe three pea
2, 3.5, and at 5 cm corresponding to one, two, or three a
age coin sizes. In the second curve the stress is orientat
an angle of 45° and the peaks are located at the same de
but the distribution changes. More events occur close to
surface.

In both cases the number of events decreases rapidly
the depth and practically no events were measured at de

FIG. 4. Plot of the results of the experiments, and of the mo
in the noncompacted medium with the force applied in the vert
direction. The model clearly reproduces the peak in the statistics
cannot reproduce the amplitude.
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larger than 10 cm. This seems to be a consequence o
finite size of the experimental box. We will focus on th
point is Sec. IV.

Another important fact is that the sliding zone is localiz
to a band at a depth of 2–3 particle diameters.

With the compacted medium we made the same meas
ments. The results are qualitatively the same as seen in F
6 and 7. The number of events decreases rapidly with
depth. Here we observe essentially two peaks, and their
sition depends on the orientation of the displacement. W
the stress is normal, the first peak is located at 3 cm and
second one at around 5 cm. If the stress is orientated b
angle of 45°, the first peak appears at 2 cm and the secon
around 4 cm as seen in Fig. 6. As for the noncompac

l,
l
ut

FIG. 5. Same as in Fig. 4 except that the force is applied a
anglea of 45°. In the model we use the same parameter as pr
ously for the model, we simply takea equal to 45°. We reproduce
the main characteristics of the experiments.

FIG. 6. Statistic of the position of the rupture. Measureme
were made with a compacted medium,a50°. The graph shows the
result of the numerical simulation.
1-4
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FINITE WIDTH OF SHEAR ZONES PHYSICAL REVIEW E65 031311
medium, the movements are closer to the surface when
force is applied at 45°. The main difference with the expe
ments with a noncompacted medium is the mean depth o
position of the sliding zone, which is larger in the compac
case.

Summarizing, due to the discrete nature of the partic
the movements are localized around particular positio
which correspond to multiples of the mean diameters of
coins. These properties will be used to test the validity of
model.

IV. MODEL AND NUMERICAL SIMULATION

In order to describe the dynamics we develop a sim
numerical model, based on the idea presented in Sec. II.
model used in the simulation includes disorder.

A mechanical consequence of the granular microstruc
is the fact that stresses inside the medium are obliged to
through pointlike contacts between grains. Here we ass
that the main property of the previous experimental res
can be recovered focusing on the geometry of the force c
centration network. The lines propagate into the medium
cording to simple rules given by the geometry. We use
model presented in Sec. II.

In this model we assume that the forces inside the m
dium deviate into the directions of the contacts. This defi
an angle of deviationb, which was chosen constant as show
in Fig. 8 ~45° in Sec. II!. Here we chooseb randomly dis-
tributed.

We will also calculate another quantity here than the o
from Sec. II. Here we do not focus on the length of the p
before the force turns up but on the depth where it tu
back. In the simulation we need to define an angle, wh
indicates the position where the disks start to move. We
it the critical anglel. In Sec. II this angle was taken to b
180°, here we will adjust its value to the experiment.

Various possibilities can be used to implement the len
unit of the path. We can keep this length constant or r
domly distributed. In our simulation we decided to choos

FIG. 7. The same witha545° andl578°, see Table I
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constant value equal to the mean diameter of the partic
namely, 1.6 cm.

The anglea of the orientation of the initial stress~see Fig.
8! it is fixed to 0° or to 45° depending on the experime
This quantity is controlled externally and cannot be adjus
to fit the experiments.

Summarizing, the most important parameters are
angle on dispersionb i that depends on the positioni, the
value of the critical anglel, and the disorder amplitudel ~see
Fig. 9!. b characterizes the direction of the stress inside
medium. It is chosen uniformly distributed around the valu
1b0 and 2b0 ~see Fig. 10!, the width of the distribution
around1b0 and2b0 is l, which is the only parameter in th
model controlling the disorder.l is the critical angle, when
the orientation of the line reaches this value we stop the w
and measure its depth.

In order to compare the results of the simulation with t
experimental data we calculate the distribution of the de
of the paths. Then we calculate the mean number of ev
that occur at depthx60.5 cm. Now we will compare the
results of the model with the experimental results and disc

FIG. 8. Model of the stress propagation. We assume that
strain follows stochastic paths. If the path reaches the critical an
l we consider that it can participate to the deformation and di
the medium. The anglea can be controlled experimentally; we use
both a50° anda545°

FIG. 9. Probability distribution function ofb. In the model the
only source of disorder is the random variableb. The strength of the
disorder is controlled byl. Here l ,b0
1-5
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FRANCOIS, LACOMBE, AND HERRMANN PHYSICAL REVIEW E65 031311
the value of the different parameters used to obtain the
fit.

Due to the simplicity of the model the comparison c
only be qualitative. The results are shown in Figs. 4, 5,
and 7. We recover qualitatively the main features of the
periment. The number of events decreases rapidly with
depth, and is concentrated around two or three mean d
eters of the coins. This effect is purely geometrical due to
finite size of the particle and the angle of dispersion.

We observe from Figs. 7–10 that there are systematic
more shallow events in the experiment as compared to
model. In our opinion this is due to the fact that the re
experimental surface is not flat and that sometimes a ne
boring particle is in a higher position than the grain that
externally pushed. In that case, we observe events tha
model cannot reproduce.

The value ofa in the simulation is taken from the exper
ments i.e., 0° or 45°. Then we choose a length that co
sponds to the mean diameter of the particle. In the simula
we take it 1.6 cm. The values of the other parameters
shown in Table I,b0 is chosen such thatb05180°/n, the
number of contactn of a grain be between 3 and 6. Th
choice ofl does not really influence the fit. According to th
model, l should be greater than 90° in order to give
upward force component. Our best fit gave, in some ca
smaller values. The fact thatl fits best for values less tha
90° in some cases shows that the events can be gene
even when the force between the centers of mass of
contacting grains has no positive upward component. We
plain this fact by the observation that in our experimen
case of circular particles many events are triggered by r

FIG. 10. Probability distribution function ofb. This graph
shows the distribution forl .b0 .

TABLE I. Parameters obtained by fitting to the experimen
data.

a b0 l l

Noncompact 0° 30° 645° 64.3°
Noncompact 45° 30° 645° 64.3°

Compact 0° 51° 636° 90°
Compact 45° 51° 636° 78°
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ing, since for rolling the force that needs to be applied m
not go through the center of mass, andl can also be smalle
than 90°. Rolling is not included in our model and is in fa
very rare if the grains are arbitrarily shaped.

Then we test the validity of the model. We change t
parametersa (0°→45°) and we letb0 and l unchanged. In
both, the compacted and noncompacted cases, the mode
dicts quite well the change in the distribution, but the res
for the great length disagree systematically. This system
effect seems to be due to the finite size of the box. T
longest paths, which produce the largest events, are
pressed due to the finite size of the experimental box
would be interesting to make the same experiment wit
bigger box, and to test the validity of these assumptions.

In the case where the coins are not compacted, the dis
sion angle that permits to recover qualitatively the results
the valuep/6 and the value of the critical angle isp/2.8. In
the second experiment we work with a compacted mediu
here the model gives the valuep/2.5 for the deviation angle
andp/1.2 for the critical angle. We summarize the results
Table I.

V. CONCLUSION

Summarizing, we have proposed a mechanism for sh
bands by which grains can unlock through collective motio
~dilatancy! of grains close to the center of the band. A qua
titative analysis of a simplified@23# model shows this to be a
plausible mechanism and justifies a width of about ten gr
diameters for the mobilizable zone, i.e., the shear band.
though our argument is, of course, very simplified, we ha
shown that the model can reproduce qualitative experime
data. We have also considered disorder in the position
grains introducing fluctuations in the local deviation ang
b. The average value ofb0 , which we chose in our calcula
tion, will also depend on the material used and will
smaller for higher polydispersity. We have disregarded
fluctuations in the forces, which are known to be very stro
@21#. Since the argument is based on the existence of a fo
line rather than on the value of the force through it, the
fluctuations might not be so important. There is, in gene
also disorder in the grain sizes, and our model considers o
the mean diameter of the particle. Finally, our calculati
was two dimensional. A generalization of our model to thr
dimensions should be performed.

One could take the effect of friction into account by r
weighting the paths that turn upward by a mobilization fa
tor, for example, inversely proportional to its length. Th
introduction of such a factor instead of a constant static f
tion threshold seems justified due to the fact that the for
are in reality random. Multiplying the mobilization facto
with the probability to have a path as calculated above
normalizing appropriately give a likelihood of 76% to mob
lize a path within the first five layers. The above argume
was made for one-half of a shear band. For the entire sh
band it, therefore, seems that a width of ten grain diame
is very consistent with our picture.
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